
Journal of Chromatography A, 840 (1999) 137–143

Short communication

Retention simulation in gas chromatography
Zhiyong Wu

Research Center of Physics and Chemistry Analysis, University of Hebei, Baoding 071002, Hebei Provinces,
People’s Republic of China

Received 28 October 1998; received in revised form 31 December 1998; accepted 14 January 1999

Abstract

It is demonstrated that the differential equation (Model 1) describing a peak motion in GC process can be served as the
general base for retention simulation. The integration equation (Model 2) is a special form of solution of the differential
equation only in constant pressure mode. Both models are not analytically solvable in term of retention time, and numerical
calculations based on standard algorithms (Ronge–Kutta algorithm for Model 1, Simpson algorithm for Model 2) have to be
used. Simulation results show the existence of some difference between the models in pressure varying GC conditions. The
difference usually varies from 0.01 to 0.15 min or more depending on the solutes, operating pressure and temperature
conditions. A q index is proposed to correlate the model difference.  1999 Elsevier Science B.V. All rights reserved.
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1. Introduction The discussions presented in this paper are mainly
based on their works.

The pressure and temperature operation mode in
GC has experienced many changes since the inven-
tion of gas chromatography. Constant pressure and 2. Pretreatment
programmed temperature are the most popular mode
used today. Programmed pressure function is avail- The related equations and variables are rewritten
able now in newly developed equipment, providing in this part for convenience in the following demon-
another variable to regulate the retention of a solute. stration and the numerical calculations. Based on the
Retention simulation under constant pressure has symbol definition in [22,25], we define z 5 x /L, x is
been well studied in the past [1–21]. Generally, both the coordinate along the column axis, L is the
temperature and pressure (or flow) may be pro- column length, thus z is the unified column coordi-
grammed in a GC process, thus tracing of a GC nate. Pz is defined as
solute in this case is very important for the develop-

]]]]]2 2ment of retention identification with the aid of Pz 5 P 2 z ? (P 2 1) (1)œ
modern gas chromatography, computer and some
retention databases. Some related fundamental works P is the relative pressure, and Pz the relative
have been achieved by a research group [22–24]. pressure at z. The Q in Ref. [22] can be expressed as
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Q 5 Pz ? j. j is the compressibility correction factor j 5 j(P) 5 j(t)
(or James–Martin factor). The differential equation
(referred to as Model 1) describing the motion of a t 5 t (T,P) 5 t (t)0 0 0

solute becomes
k 5 k(T ) 5 k(t)dz 1

] ]]]]]5 (2)dt Pz ? j ? t ? (1 1 k) As can be seen from the above relations, except Pz,0

all other variables can be expressed as functions of
Following the treatment in Ref. [24], the relation of k time t. Constant temperature and constant pressure
and T is expressed as process can be served as a special kind of program

DH such that they keep constant as time develops.sa ]2
R?T]k 5 ? e (3) Although some variable transform can be made inb

the simulation, for example in terms of temperature,
DHs is the molar enthalpy, a the entropy factor, b z and t are the actual variables to be worked on, and
the phase ratio of the column, R the gas constant. All the corresponding temperature can be obtained ac-
of these are usually considered as constants in the cording to a given temperature program.
simulation for a given solute and a column. With the The aim of the solution of the differential equation

0 0aid of a reference condition of T and P , where the is to find z 5 z(t) or t 5 t(z) with z 5 0 and t 5 0 as
respected hold up time and James–Martin factor are an initial condition, which is meaningful in gas

0 0t , and j , the t at T and P conditions can be chromatography. The corresponding time at z51 is0 0

expressed as the retention time to be simulated.

20 0 Nj P 2 1 T0 ] ]]] ]t 5 t ? ? ? (4)S D0 0 2 0j 3. DemonstrationP 2 1 T

For nitrogen carrier gas, N is 0.725. For a constant
3.1. Solubility in constant pressure modeflow mode, as a special program pressure P can be

expressed as a function of T as
For a constant pressure GC process, where P does

]]]]]]N not change by time, Pz depends only on z, and jT 20]P 5 1 1 ? (P 2 1) (5)S D become a constant, the differential Eq. (2) can be0œ T
solved by variable separation and integration in the

Thus, the hold-up time in this mode can be obtained interested domain as Eq. (7)
from Eqs. (5) and (4). The hold-up time in constant tR 1
flow mode can also be expressed in terms of T and P 1

]]]]]E dt 5EPz(z) ? j ? dz (7)as Eq. (6). t (t) ? 1 1 k(t)f g0
0 0

32(21N )T P 2 10 ] ]]] It is easy to demonstrate that the value of the rightt 5 t ? ? (6)S D 30 0 0 0T P 2 1 part of Eq. (7) is 1 in a constant pressure mode, thus
we haveFor a GC process in which both the temperature
tRand pressure may be varying according to certain

1programs, the dependency of the variables in the ]]]E dt 5 1 (8)
t ? (1 1 k)equation can be expressed as follows 0

0

T 5 T(t) This is the mathematical model widely used for
retention simulation in the literature, and referred to

P 5 P(t) as Model 2 in this paper. Most capillary gas chroma-
tography works in this mode.

Pz 5 Pz(z,P) 5 Pz(z,t) When the temperature is also kept constant, t and0
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k become constants, thus we have the analytical So whether the condition Eq. (14) is applied exclu-
solution of Eq. (8) as sively depends on P9(t). Eq. (17) will be 0 only

when the P keeps constant in the whole process,t 5 t (1 1 k) (9)R 0 rather than a part or at some points or vicinity of a
point. And this can be served as a sufficient andThis is the only analytical solution of the differential
necessary condition to make the differential Eq. (10)Eqs. (8) and (2) in terms of t .R

the exact differential. Thus, we will obtain the finalEq. (8) is only a solution in integrate equation
solution in the form of Eq. (8).form, not a final solution of the retention time, and

In a pressure varying GC mode, where P9(t) willnumerical integration has to be applied to obtain the
not equal zero, Eq. (14) is not assured, thus novalue of t .R

solution can be obtained. This conclusion is obvious
from the above demonstration.3.2. Solubility in pressure varying mode

In one word, Model 1 and Model 2 are mathemati-
cally different. Model 1 is more general, whileThe original differential Eq. (2) can also be
Model 2 is only a special solution of Model 1 inreformed as
constant pressure GC mode.

1
]]]]Pz ? dz 2 ? dt 5 0 (10)
j ? t ? (1 1 k)0

4. Algorithmsto fit the general form of a typical ordinary differen-
tial Eq. (13), let

As stated above, both the integration Eq. (8) and
M(z,t) 5 Pz(z,t) (11) differential Eq. (2) are not analytically solvable in

terms of t , numerical calculations have to be usedR1
]]]]]]N(t) 5 2 (12) [28]. In this paper, the constant step Ronge–Kuttaj(t) ? t (t) ? [1 1 k(t)]0 algorithm is used for the numerical calculation of

Model 1 in the range of z[0,1], and the constant stepthus, Eq. (2) becomes
Simpson integration algorithms are used for Model

M(z,t)dz 1 N(t)dt 5 0 (13) 2. In the integration of Model 2, the time margin is
to be found until the integration value reached unity.

The sufficient and necessary condition to make the In the Ronge–Kutta procedure, the initial condition
differential equation the exact differential and has the of z 5 0 and t 5 0 is used, the corresponding t at
solution in the from of Eq. (15) is that Eq. (14) must z 5 1 is the retention time to be simulated. These
be assured [26,27]. algorithms used in this paper are classical numerical

procedures which can be found in numerical mathe-≠M ≠N
] ]5 (14) matics such as in Ref. [29,30]. An index q is defined≠t ≠z

asz t

1E M(z,t)dz 1E N(t)dt 5 C (15)
q 5E Pz(z,t) ? j(t)dz (18)0 0

0For the particular differential Eq. (10) we have
this is the same as Eq. (18) in Ref. [24]. The q value

≠N ≠ 1 can be obtained by trapezoid integration in the] ] ]]]]]]5 2 5 0 (16)H J≠z ≠z j(t) ? t (t) ? 1 1 k(t)f g0 process of numerical calculation of the differential
Eq. (2) by the Ronge–Kutta procedure.≠M ≠Pz(z,t) (1 2 z) ? P(t)

] ]]] ]]]]5 5 ? P9(t) (17) The only analytical solution of Eq. (2) can be
≠t ≠t Pz(z,t)

obtained as Eq. (9) in constant pressure and constant
temperature GC mode, thus, this mode of GC can beThe P and Pz will never be 0 in the chromato-
used to test the performance of the algorithms, forgraphically meaningful domain of z[0,1] and t[0,t ].R
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Table 1
aTest of the algorithms by a constant pressure and constant temperature GC mode (thermodynamic data from Ref. [23])

Solutes Thermodynamic Eq. (8) (Model 2) Eq. (2) (Model 1) Analytical
parameters Simpson integration algorithm Ronge–Kutta algorithm solution

No. Name tR
6

2DH /R (a /b )310 0.05 min step 0.01 min step 0.005 min step 0.001 step The indexS

t t t t qR R R R

1 n-Octane 4175 5.533 3.10 3.06 3.06 3.053239 1.000 3.053233
2 p-Xylene 4262 6.924 3.40 3.32 3.31 3.304248 1.000 3.304241
3 1,3,5- 4661 4.417 3.90 3.82 3.81 3.809664 1.000 3.809658

Trimethylbenzene
4 1-Undecene 5313 1.729 5.00 5.00 4.99 4.988316 1.000 4.988303
5 Naphthalene 5107 4.623 6.50 6.44 6.44 6.430661 1.000 6.430640
6 n-Dodecane 5559 1.695 7.00 6.92 6.92 6.911489 1.000 6.911475
7 Tetradecane 5990 1.545 14.10 14.06 14.06 14.05250 1.000 14.05247
8 Hexadecane 6760 0.635 34.50 34.42 34.41 34.40947 1.000 34.40939

a Note: nitrogen as carrier gas, N50.725. Inlet pressure 1282 Torr, outlet pressure 770 Torr, hold up time 2.214 min, isothermal column temperature 1308C.

this is the only case we can obtain the accurate t 5. Numerical results and discussionR

which can be used as a standard to compare with. As
can be seen in Table 1, when the 0.001 step of z is It is very necessary to make it clear if the Model 2
used in the Ronge–Kutta algorithm for Model 1, we is explicitly applicable for a programmed pressure
can only find a difference of five digits after the GC mode as demonstrated in Ref. [24]. This is very
decimal. And when the 0.005 min step is used in the important for avoiding errors of mathematical model
Simpson algorithms for Model 2, the errors are no sources. Four typical pressure programs are simu-
more than 0.01 min which is mainly from the lated and the results are listed in Table 2. It can be
condition loop of the Simpson integration procedure. seen that in the constant pressure mode (Program 2),
Concerning the retention reproducibility level of the as an extreme programmed pressure case, the maxi-
latest equipment, this level of accuracy of the mum model difference was 0.01 min, which is
algorithms is appropriate. The q value is also listed mainly from the intercept error in the Simpson
in the table, which is unity as can be predicted integration calculation. In the constant mass flow
theoretically. mode (in Program 1), as a special program of

Fig. 1. Relation of unified local velocity (u) and unified average velocity (v) with time. Solid line for the average velocity, and dashed line
for the local velocity, No. 8 solute: n-hexadecane. (A) Constant pressure and constant temperature mode, for detailed conditions see Table 1,
Model difference 0.00 min; (B) programmed pressure and constant temperature mode, Program 4 in Table 2, Model difference 0.56 min;
(C) programmed pressure and programmed temperature mode, Program 3 in Table 2, Model difference 0.11 min.



Z.
W

u
/

J.
C

hrom
atogr.

A
840

(1999)
137

–143
141

Table 2
aComparison of simulated retention times based on different models for different GC operating programs

Programs Program 1 Program 2 Program 3 Program 4

No. of solute

t t q t 2t t t q t 2t t t q t 2t t t q t 2tSM RK SM RK SM RK SM RK SM RK SM RK SM RK SM RK

1 6.21 6.19 0.997 0.02 4.60 4.59 1.000 0.01 5.10 5.05 0.989 0.05 2.86 2.84 0.993 0.02

2 7.78 7.76 0.996 0.02 6.04 6.03 1.000 0.01 6.52 6.45 0.986 0.07 3.20 3.17 0.992 0.03

3 10.58 10.55 0.994 0.03 8.87 8.87 1.000 0.00 9.53 9.43 0.983 0.10 3.91 3.87 0.991 0.04

4 13.60 13.56 0.992 0.04 12.56 12.56 1.000 0.00 14.96 14.83 0.981 0.13 5.59 5.52 0.987 0.07

5 14.87 14.83 0.991 0.04 13.97 13.97 1.000 0.00 17.48 17.33 0.981 0.15 7.18 7.09 0.985 0.09

6 15.46 15.42 0.991 0.04 14.71 14.71 1.000 0.00 19.55 19.40 0.981 0.15 7.99 7.88 0.984 0.11

7 18.25 18.21 0.992 0.04 17.88 17.88 1.000 0.00 28.07 27.93 0.984 0.14 15.35 15.09 0.976 0.26

8 20.81 20.78 0.993 0.03 20.78 20.77 1.000 0.01 38.08 37.92 0.988 0.11 31.21 30.65 0.972 0.56

0Inlet pressure p 1277 Torr 1546 Torr 1282 Torr 1282 Torri
0Outlet pressure p 765 Torr 770 Torr 770 Torr 770 Torro

0Hold up time t 2.224 min 1.489 min 2.214 min 2.214 min0

Temperature program 508C (2.5 min), 58C/min to 808C 508C (2.5 min), 58C/min to 808C 508C, 28C/min to end 1108C isothermal

(0.5 min), 108C/min to 2508C (0.5 min), 108C/min to 2508C

Pressure program Constant mass flow Constant inlet pressure 1282 Torr, 51.715 Torr /min to end 1282 Torr, 51.715 Torr /min to end

a Note: the solutes and the respected thermodynamic parameters are the same as in Table 1. Carrier gas: nitrogen. Programs 1 and 2 are the same as Programs 2 and 5 in Table
3 of Ref. [23]. t – the simulated retention time based on Model 2 by Simpson algorithm with step 0.005 min; t – the simulated retention time based on Model 1 bySM RK

Ronge–Kutta algorithm with step 0.001; q – the index as defined in Eq. (18). 1 Torr5133.322 Pa.
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pressure, the maximum difference of 0.04 min is perimental errors that deserve to be noticed as an
error contribution from models.found. In Program 3 where both pressure and

temperature are programmed, a maximum difference
of 0.15 min was found. A difference of 0.56 min is

6. Conclusionsfound in Program 4, the same pressure program as
Program 3 but with constant temperature. These

Mainly four points can be drawn from the abovedifferences have exceeded the level of the calculation
investigations.accuracy of 0.01 min, and this is the direct conse-

(1) The differential equation (Model 1) is the onlyquence of the use of Eq. (8) in the pressure varying
general base of GC simulation in any pressure andmode, which is coincides with the demonstration
temperature programming conditions, including con-part.
stant pressure and/or constant temperature condi-We may also notice that the differences are
tions.accompanied with some extent of deviations of q

(2) The integration equation (Model 2) is a specialvalue to unity. The maximum q deviation is 2.73%
solution of the differential equation in constantwith a model difference of 0.56 min for n-hexade-
pressure mode, and numerical solution has to becane in Program 4. Though the q value correlates
made to obtain the final solution of retention time.with model difference, the relation does not seem to
Retention time simulation can be achieved with thisbe simple.
equation without theoretical approximation.The local unified velocity (u) and average unified

(3) Under the usual GC conditions, the differencevelocity (v) of a solute at a time t can be defined as ]between Model 1 and 2 is very small because of thebelow
compensation effect. Obvious differences may be

1 found in some cases such as in slow temperature and
]]]]]u 5 (19)
Pz ? j ? t ? (1 1 k) rapid pressure changing GC conditions. Only ap-0

proximate results could be obtained when the Model
1 2 is used for the pressure varying GC process.]]]v 5 (20)

t ? (1 1 k) (4) The deviation of the q value from unity can be0

served as an index of the model difference intro-
Generally, both u and v change by time for a peak

duced in retention time simulation in specific oper-
in a GC process, but the curves are different because

ating conditions for a specific solute.
of the Pz ? j term. At the beginning, v is greater than
u, as the solute approaches the end of the column,
the curves intercross, and u increases more rapidly
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